Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Virus Res ; 344: 199369, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608732

RESUMEN

Tobacco (Nicotiana tabacum) is one of the major cash crops in China. Potato virus Y (PVY), a representative member of the genus Potyvirus, greatly reduces the quality and yield of tobacco leaves by inducing veinal necrosis. Mild strain-mediated cross-protection is an attractive method of controlling diseases caused by PVY. Currently, there is a lack of effective and stable attenuated PVY mutants. Potyviral helper component-protease (HC-Pro) is a likely target for the development of mild strains. Our previous studies showed that the residues lysine at positions 124 and 182 (K124 and K182) in HC-Pro were involved in PVY virulence, and the conserved KITC motif in HC-Pro was involved in aphid transmission. In this study, to improve the stability of PVY mild strains, K at position 50 (K50) in KITC motif, K124, and K182 were separately substituted with glutamic acid (E), leucine (L), and arginine (R), resulting in a triple-mutant PVY-HCELR. The mutant PVY-HCELR had attenuated virulence and did not induce leaf veinal necrosis symptoms in tobacco plants and could not be transmitted by Myzus persicae. Furthermore, PVY-HCELR mutant was genetically stable after six serial passages, and only caused mild mosaic symptoms in tobacco plants even at 90 days post inoculation. The tobacco plants cross-protected by PVY-HCELR mutant showed high resistance to the wild-type PVY. This study showed that PVY-HCELR mutant was a promising mild mutant for cross-protection to control PVY.


Asunto(s)
Protección Cruzada , Mutación , Nicotiana , Enfermedades de las Plantas , Potyvirus , Proteínas Virales , Potyvirus/genética , Potyvirus/patogenicidad , Potyvirus/enzimología , Nicotiana/virología , Enfermedades de las Plantas/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virulencia , Animales , Áfidos/virología , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Hojas de la Planta/virología , China
2.
Plant Cell Tissue Organ Cult ; 153(3): 511-523, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197002

RESUMEN

The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Supplementary Information: The online version contains supplementary material available at 10.1007/s11240-023-02486-7.

4.
Plant Physiol ; 189(2): 754-771, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35294544

RESUMEN

Triacylglycerol lipase (TGL) plays critical roles in providing energy for seed germination and plant development. However, the role of TGL in regulating plant virus infection is largely unknown. In this study, we adopted affinity purification coupled with mass spectrometry and identified that a maize (Zea mays) pathogenesis-related lipase protein Z. mays TGL (ZmTGL) interacted with helper component-proteinase (HC-Pro) of sugarcane mosaic virus (SCMV). Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation assays confirmed that ZmTGL directly interacted with SCMV HC-Pro in vitro and in vivo. The 101-460 residues of SCMV HC-Pro were important for its interaction with ZmTGL. ZmTGL and SCMV HC-Pro co-localized at the mitochondria. Silencing of ZmTGL facilitated SCMV infection, and over-expression of ZmTGL reduced the RNA silencing suppression activity, most likely through reducing HC-Pro accumulation. Our results provided evidence that the lipase hydrolase activity of ZmTGL was associated with reducing HC-Pro accumulation, activation of salicylic acid (SA)-mediated defense response, and inhibition of SCMV infection. We show that ZmTGL inhibits SCMV infection by reducing HC-Pro accumulation and activating the SA pathway.


Asunto(s)
Potyvirus , Zea mays , Lipasa/genética , Lipasa/metabolismo , Enfermedades de las Plantas , Potyvirus/fisiología , Ácido Salicílico/metabolismo , Zea mays/genética
5.
Gene ; 823: 146384, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35248661

RESUMEN

UV-B radiation is a typical environmental stressor that can promote phytochemical accumulation in plants. Taxus species are highly appreciated due to the existence of bioactive taxoids (especially paclitaxel) and flavonoids. However, the effect of UV-B radiation on taxoid and flavonoid biosynthesis in Taxus cuspidata Sieb. et Zucc. is largely unknown. In the present work, the accumulation of taxoids and flavonoids in T. cuspidata plantlets was significantly induced by 12 and 24 h of UV-B radiation (3 W/m2), and a large number of significantly differentially expressed genes were obtained via transcriptomic analysis. The significant up-regulation of antioxidant enzyme- and flavonoid biosynthesis-related genes (phenylalanine ammonia lyase 1, chalcone synthase 2, flavonol synthase 1, and flavonoid 3', 5'-hydroxylase 2), suggested that UV-B might cause the oxidative stress thus promoting flavonoid accumulation in T. cuspidata. Moreover, the expression of some genes related to jasmonate metabolism and taxoid biosynthesis (taxadiene synthase, baccatin III-3-amino 3-phenylpropanoyltransferase 1, taxadiene-5α-hydroxylase, and ethylene response factors 15) was significantly activated, which indicated that UV-B might initiate jasmonate signaling pathway that contributed to taxoid enhancement in T. cuspidata. Additionally, the identification of some up-regulated genes involved in lignin biosynthesis pathway indicated that the lignification process in T. cuspidata might be stimulated for defense against UV-B radiation. Overall, our findings provided a better understanding of some potential key genes associated with flavonoid and taxoid biosynthesis in T. cuspidata exposed to UV-B radiation.


Asunto(s)
Vías Biosintéticas , Flavonoides/biosíntesis , Perfilación de la Expresión Génica/métodos , Tallos de la Planta/crecimiento & desarrollo , Taxoides/metabolismo , Taxus/genética , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Estrés Oxidativo , Proteínas de Plantas/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/efectos de la radiación , RNA-Seq , Espectrometría de Masas en Tándem , Taxus/crecimiento & desarrollo , Taxus/metabolismo , Taxus/efectos de la radiación , Rayos Ultravioleta/efectos adversos
6.
Inorg Chem ; 61(8): 3406-3411, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35170960

RESUMEN

The design and preparation of proton-conducting metal-organic frameworks (MOFs) with superconductivity are of significance for the proton-exchange membrane fuel cell (PEMFC). Introducing functional structural defects to enhance proton conductivity is a good approach. Here, we synthesized a series of UiO-66 (first synthesized in the University of Oslo) with missing-linker defects and investigated the effect of defect numbers on the proton conductivity of the samples. Among them, 60-UiO-66-1.8 (60 represents the synthesis temperature and 1.8 the number of defects) prepared with 3-mercaptopropionic acid as a modulator has the best proton conductivity, which is 3 × 10-2 S cm-1 at 100 °C and under 98% relative humidity (RH). The acidic sites induced by missing-linker defects further promote the chemisorption of ammonia molecules, resulting in the formation of a richer hydrogen-bond network and hence boosting the proton conductivity to 1.04 × 10-1 S cm-1 at 80 °C, which is one of the highest values among the reported MOF-based proton conductor. Therefore, this work provides a new strategy for enhancing proton conduction in MOF-based materials.

7.
J Photochem Photobiol B ; 228: 112406, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35152064

RESUMEN

UV-B radiation is an ideal elicitation strategy for promoting phytochemical accumulation in plant in vitro cultures, associated with various advantages of easy manipulation, cost-effectiveness, no residue, and instantaneous termination. For the first time, UV-B radiation was used to enhance the production of bioactive phenolic compounds (flavonoids and stilbenes) in pigeon pea hairy root cultures (PPHRCs). The total yield of eight flavonoids (414.95 ± 50.68 µg/g DW) in 42-day-old PPHRCs exposed to 4 h of UV-B radiation increased by 1.49-fold as against control, whereas the yield of cajaninstilbene acid (6566.01 ± 702.14 µg/g DW) in PPHRCs undergoing 10 h of UV-B radiation significantly increased by 2.31-fold over control. UV-B radiation was found to induce the oxidative stress in PPHRCs and cause the tissue damage to hairy roots, which improved the levels of endogenous salicylic acid thus triggering the expression of genes involved in phenylpropanoid biosynthesis pathway. And, a regulation competition in metabolic flow dominated by CHS and STS was responsible for the difference in accumulation trends of flavonoids and cajaninstilbene acid. Results of this study not only provide a feasible and simple UV-B supplementation strategy for the enhanced production of bioactive phenolic compounds (especially the high-value cajaninstilbene acid) in PPHRCs, but also contributed to the understanding of photobiological responses related to secondary metabolism.


Asunto(s)
Cajanus , Flavonoides/metabolismo , Pisum sativum/metabolismo , Fenoles/metabolismo , Raíces de Plantas/metabolismo
8.
Phytopathology ; 112(2): 441-451, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34191551

RESUMEN

Potyviral coat protein (CP) is involved in the replication and movement of potyviruses. However, little information is available on the roles of CP-coding sequence in potyviral infection. Here, we introduced synonymous substitutions to the codon C574G575C576 coding conserved residue arginine at position 192 (R192) of tobacco vein banding mosaic virus (TVBMV) CP. Substitution of the codon C574G575C576 to A574G575A576 or A574G575G576, but not C574G575A576, C574G575T576, or C574G575G576, reduced the replication, cell-to-cell movement, and accumulation of TVBMV in Nicotiana benthamiana plants, suggesting that C574 was critical for replication of TVBMV. Nucleotides 531 to 576 of the TVBMV CP-coding sequence were predicted to form a stem-loop structure, in which four consecutive C-G base pairs (C576-G531, C532-G575, C574-G533, and C534-G573) were located at the stem. Synonymous substitutions of R178-codon C532G533C534 to A532G533A534 and A532G533G534, but not C532G533A534, C532G533T534, or C532G533G534, reduced the replication levels, cell-to-cell, and systemic movement of TVBMV, suggesting that C532 was critical for TVBMV replication. Synonymous substitutions disrupting base pairs C576-G531 and C534-G573 did not affect viral accumulation. After three serial-passage inoculations, the accumulation of spontaneous mutant viruses was restored, and codons A532G533A534, A532G533G534, A574G575A576, or A574G575G576 of mutants were each separately changed to C532G533A534, C532G533G534, C574G575A576, or C574G575G576. Synonymous mutation of R178 and R192 also reduced viral accumulation in N. tabacum plants. Therefore, we concluded that the two consecutive C532-G575 and C574-G533 base pairs played critical roles in TVBMV replication via maintaining the stability of the stem-loop structures formed by nucleotides 531 to 576 of the CP-coding sequence.


Asunto(s)
Enfermedades de las Plantas , Potyvirus , Sistemas de Lectura Abierta , Potyvirus/genética , ARN Viral/genética , Nicotiana , Replicación Viral
9.
Plant Physiol ; 187(1): 174-186, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618134

RESUMEN

Chloroplasts play an indispensable role in the arms race between plant viruses and hosts. Chloroplast proteins are often recruited by plant viruses to support viral replication and movement. However, the mechanism by which chloroplast proteins regulate potyvirus infection remains largely unknown. In this study, we observed that Nicotiana benthamiana ribosomal protein large subunit 1 (NbRPL1), a chloroplast ribosomal protein, localized to the chloroplasts via its N-terminal 61 amino acids (transit peptide), and interacted with tobacco vein banding mosaic virus (TVBMV) nuclear inclusion protein b (NIb), an RNA-dependent RNA polymerase. Upon TVBMV infection, NbRPL1 was recruited into the 6K2-induced viral replication complexes in chloroplasts. Silencing of NbRPL1 expression reduced TVBMV replication. NbRPL1 competed with NbBeclin1 to bind NIb, and reduced the NbBeclin1-mediated degradation of NIb. Therefore, our results suggest that NbRPL1 interacts with NIb in the chloroplasts, reduces NbBeclin1-mediated NIb degradation, and enhances TVBMV infection.


Asunto(s)
Proteínas de Cloroplastos/genética , Enfermedades de las Plantas/genética , Potyvirus/fisiología , Proteínas Virales/genética , Proteínas de Cloroplastos/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/enzimología , Nicotiana , Proteínas Virales/metabolismo
10.
Dalton Trans ; 50(42): 15267-15273, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34632996

RESUMEN

In this work, organic supramolecular linkers involving cucubit[6]urils CB[6] and N,N'-hexamethylene-bis(pyrazinyl hexafluorophosphate) (BPHF@CB[6]) were utilized to assemble dodenuclear silver chalcogenolate clusters into three one-dimensional (1D) materials under different synthesis conditions. These three crystal structures of CB[6]-based sliver cluster-organic rotaxane frameworks were well resolved, and their emission properties were investigated systematically. This construction strategy involving organic supramolecular linkers gives a new methodology for cluster-assembled materials with intriguing structural and functional properties.

11.
Cell Death Dis ; 12(9): 799, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404767

RESUMEN

Lactate dehydrogenase A (LDHA), a critical component of the glycolytic pathway, relates to the development of various cancers, including thyroid cancer. However, the regulatory mechanism of LDHA inhibition and the physiological significance of the LDHA inhibitors in papillary thyroid cancer (PTC) are unknown. Long non-coding RNA (lncRNA) plays a vital role in tumor growth and progression. Here, we identified a novel lncRNA LINC00671 negatively correlated with LDHA, downregulating LDHA expression and predicting good clinical outcome in thyroid cancer. Moreover, hypoxia inhibits LINC00671 expression and activates LDHA expression largely through transcriptional factor STAT3. STAT3/LINC00671/LDHA axis regulates thyroid cancer glycolysis, growth, and lung metastasis both in vitro and in vivo. In thyroid cancer patients, LINC00671 expression is negatively correlated with LDHA and STAT3 expression. Our work established STAT3/LINC00671/LDHA as a critical axis to regulate PTC growth and progression. Inhibition of LDHA or STAT3 or supplement of LINC00671 could be potential therapeutic strategies in thyroid cancer.


Asunto(s)
Glucólisis/genética , Lactato Deshidrogenasa 5/metabolismo , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT3/metabolismo , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/secundario , Ratones Desnudos , Modelos Biológicos , Invasividad Neoplásica , Metástasis de la Neoplasia , Pronóstico , ARN Largo no Codificante/genética , Hipoxia Tumoral
12.
Mol Plant Microbe Interact ; 34(6): 658-668, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33534601

RESUMEN

Potyviruses move to neighboring cells in the form of virus particles or a coat protein (CP)-containing ribonucleoprotein complex. However, the precise roles of RNA-binding residues in potyviral CP in viral cell-to-cell movement remain to be elucidated. In this study, we predicted the three-dimensional model of tobacco vein banding mosaic virus (TVBMV)-encoded CP and found nine residues presumably located in the CP RNA-binding pocket. Substitutions of the two basic residues at positions 192 and 225 (R192 and K225) with either alanine, cysteine, or glutamic acid abolished TVBMV cell-to-cell and systemic movement in Nicotiana benthamiana plants. These substitutions also reduced the replication of the mutant viruses. Results from the electrophoretic mobility shift assay showed that the RNA-binding activity of mutant CPs derived from R192 or K225 substitutions was significantly lower than that of wild-type CP. Analysis of purified virus particles showed that mutant viruses with R192 or K225 substitutions formed RNA-free virus-like particles. Mutations of R192 and K225 did not change the CP plasmodesmata localization. The wild-type TVBMV CP could rescue the deficient cell-to-cell movement of mutant viruses. Moreover, deletion of any of the other seven residues also abolished TVBMV cell-to-cell movement and reduced the CP RNA-binding activity. The corresponding nine residues in watermelon mosaic virus CP were also found to play essential roles in virus cell-to-cell movement. In conclusion, residues R192 and K225 in the CP RNA-binding pocket are critical for viral RNA binding and affect both virus replication and cell-to-cell movement.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de la Cápside , Nicotiana , Proteínas de la Cápside/genética , Potyvirus , ARN Viral/genética , Nicotiana/genética , Replicación Viral
13.
Front Plant Sci ; 12: 788963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975975

RESUMEN

Sugarcane mosaic virus (SCMV; genus Potyvirus) induces maize dwarf mosaic disease that has caused serious yield losses of maize in China. Cross-protection is one of the efficient strategies to fight against severe virus strains. Although many mild strains have been identified, the spontaneous mutation is one of the challenging problems affecting their application in cross-protection. In this study, we found that the substitution of cysteine (C) at positions 57 or 60 in the zinc finger-like motif of HC-Pro with alanine (A; C57A or C60A) significantly reduced its RNA silencing suppression activity and SCMV virulence. To reduce the risk of mild strains mutating to virulent ones by reverse or complementary mutations, we obtained attenuated SCMV mutants with double-mutations in the zinc finger-like and FRNK motifs of HC-Pro and evaluated their potential application in cross-protection. The results showed that the maize plants infected with FKNK/C60A double-mutant showed symptomless until 95 days post-inoculation and FKNK/C60A cross-protected plants displayed high resistance to severe SCMV strain. This study provides theoretical and material bases for the control of SCMV through cross-protection.

14.
Food Chem ; 335: 127602, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739807

RESUMEN

Bioactive phenolics primarily contribute to versatile health benefits of pigeon pea. For the first time, an UPLC-QqQ-MS/MS method was developed for the quantitative analysis of eleven bioactive phenolic compounds in pigeon pea natural resources (seeds, leaves, and roots) and in vitro cultures (calli and hairy roots). The proposed method could be achieved within 6 min of running time, and displayed the satisfactory linearity, sensitivity, precision, accuracy, and stability. According to analytical results, the distribution of eleven target compounds in different organs of pigeon pea was clarified. Also, it was surprisingly found that pigeon pea in vitro cultures exhibited superiority in contents of genistin and cajaninstilbene acid as compared with natural resources. Overall, the present work provided a rapid and sensitive analysis approach, which could be useful not only for quality control of pigeon pea natural resources, but also for applicability and safety evaluation of pigeon pea in vitro cultures.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Fenoles/análisis , Pisum sativum/química , Espectrometría de Masas en Tándem/métodos , Medicamentos Herbarios Chinos/química , Hojas de la Planta/química , Control de Calidad , Reproducibilidad de los Resultados , Semillas/química
15.
Nanoscale Res Lett ; 15(1): 211, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170390

RESUMEN

A 13.5 kV 4H-SiC PiN rectifier with a considerable active area of 0.1 cm2 is fabricated in this paper. Charge-field-modulated junction termination extension (CFM-JTE) has been proposed for satisfying the requirement of ultra-high reverse voltage, which enlarges the JTE dose tolerance window, making it approximately 2.8 times that of the conventional two-zone JTE. Besides, the CFM-JTE can be implemented through the conventional two-zone JTE process. The measured forward current is up to 100 A @ VF = 5.2 V in the absence of carrier lifetime enhancement technology. The CFM-JTE structure accomplishes 96% of the theoretical breakdown voltage of the parallel plane junction with a relatively small terminal area of 400 µm, which contributes to achieving the Baliga's figure of merit of 58.8 GW/cm2.

16.
Front Plant Sci ; 11: 1279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973838

RESUMEN

Cross-protection is a promising measure to control plant viral diseases. Reverse genetics had been recently adopted to generate attenuated mutants that have potential in cross-protection. But studies on the variability of the progeny viruses of the attenuated mutants are scarce. Sugarcane mosaic virus (SCMV; genus Potyvirus, family Potyviridae) is the prevalent virus inducing maize dwarf mosaic disease in China. Here, we showed that the substitution of arginine with isoleucine in the FRNK motif at position 184 of helper component-proteinase (HC-Pro) abolished its RNA silencing suppression (RSS) activity, drastically reduced the virulence and accumulation level of SCMV, and impaired the synergism between SCMV and maize chlorotic mottle virus. The attenuated mutant could protect maize plants from a severe infection of SCMV. However, a spontaneous mutation of glycine at position 440 to arginine in HC-Pro rescued the virulence and synergism with maize chlorotic mottle virus of SCMV and the RSS activity of HC-Pro. Similar results were obtained with tobacco vein banding mosaic virus and watermelon mosaic virus. These results provide novel evidence for the complementary mutation of potyviruses in maintaining the HC-Pro RSS activity and potyviral virulence and remind us of evaluating the potential risk of attenuated mutants thoroughly before applying for the control of plant viral diseases via cross-protection.

17.
J Agric Food Chem ; 68(31): 8350-8361, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32672956

RESUMEN

Phenolic compounds in pigeon pea possess various biological properties beneficial to human health. In this study, pigeon pea hairy root cultures (PPHRCs) were developed as an effective in vitro platform for the production of phenolic compounds. A high-productive hairy root line was screened and characterized, and its culture conditions were optimized in terms of biomass productivity and phenolic yield. The comparative profiling of 10 phenolic compounds in PPHRCs and pigeon pea natural resources (seeds, leaves, and roots) was achieved by ultra-high-performance liquid chromatography-tandem mass spectrometry analysis. The total phenolic yield in PPHRCs (3278.44 µg/g) was much higher than those in seeds (68.86 µg/g) and roots (846.03 µg/g), and comparable to leaves (3379.49 µg/g). Notably, PPHRCs exhibited superiority in the yield of the most important health-promoting compound cajaninstilbene acid (2996.23 µg/g) against natural resources (4.42-2293.31 µg/g). Overall, PPHRCs could serve as promising potential alternative sources for the production of phenolic compounds with nutraceutical/medicinal values.


Asunto(s)
Cajanus/metabolismo , Fenoles/química , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Antioxidantes/química , Antioxidantes/metabolismo , Cajanus/química , Cajanus/crecimiento & desarrollo , Técnicas de Cultivo de Célula , Fenoles/metabolismo , Extractos Vegetales/metabolismo , Raíces de Plantas/metabolismo , Semillas/química , Semillas/metabolismo
18.
J Pharm Biomed Anal ; 189: 113456, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32653816

RESUMEN

Taxus species are highly concerned due to the presence of anticancer taxoids (especially paclitaxel) and health beneficial flavonoids. For the first time, an UHPLC-MS/MS method was developed for the simultaneous determination of seven taxoids and seven flavonoids in twigs and leaves of three Taxus species. The satisfactory separation of fourteen target compounds was achieved within 5 min of running time on an Agilent ZORBAX Eclipse Plus C18 column (50 mm × 2.1 mm I.D., 1.8 µm) using an acetonitrile-water gradient elution program. Mass transitions of all analytes in selected reaction monitoring acquisition mode were systematically optimized for obtaining the highest signal intensities. Regression equations of all analytes exhibited excellent linearities with coefficients higher than 0.9990, and the lowest limits of quantification of all analytes ranged from 0.01 to 1.66 ng/mL. The intra- and inter-day precisions (relative standard deviations) of all analytes were less than 4.17% for retention time and less than 7.42% for peak area, and the spiking standard recoveries of all analytes ranged from 96.85%-104.77%. By the aid of the proposed method, the distribution of fourteen target compounds in twigs and leaves of Taxus chinensis, Taxus cuspidata, and Taxus media was clearly figured out. Overall, the present work provided a rapid and valid UHPLC-MS/MS approach, which could not only be useful for quality control and applicability assessment of twigs and leaves of the three Taxus species in pharmaceutical and nutraceutical industries, but also offer a good reference for the systematic analysis of taxoids and flavonoids in other Taxus species.


Asunto(s)
Espectrometría de Masas en Tándem , Taxus , Cromatografía Líquida de Alta Presión , Flavonoides , Hojas de la Planta/química , Reproducibilidad de los Resultados , Taxoides
19.
Oral Dis ; 25(7): 1759-1768, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31357246

RESUMEN

OBJECTIVES: To detect whether early growth response 1 (EGR1) in peripheral blood leucocytes (PBLs) indicates temporomandibular joint (TMJ) osteoarthritis (OA) lesions. MATERIALS AND METHODS: Egr1 mRNA expression levels in PBLs were detected in eight malocclusion patients without temporomandibular disorder (TMD) signs and 16 malocclusion patients with clinical TMD signs with (eight) or without (eight) imaging signs of TMJ OA. Twelve 6-week-old rats were randomized to a control group and a unilateral anterior crossbite (UAC) group and were sampled at 4 weeks. The Egr1 mRNA expression levels in PBLs and protein expression levels in different orofacial tissues were measured. RESULTS: Patients with TMD signs with/without TMJ OA diagnosis showed lower Egr1 mRNA expression levels in PBLs than patients without TMD signs. The lower Egr1 mRNA expression was also found in the PBLs of UAC rats, which were induced to exhibit early histo-morphological signs of TMJ OA lesions. In subchondral bone of UAC rats, EGR1 protein expression was decreased, co-localization of EGR1 with osterix or dentin matrix protein-1 was identified, and the number of EGR1 and osterix double-positive cells was reduced (all p < .05). CONCLUSION: Egr1 reduction in PBLs potentially indicates subchondral bone OA lesions at an early stage.


Asunto(s)
Cartílago Articular , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Cóndilo Mandibular , Osteoartritis , Trastornos de la Articulación Temporomandibular/etiología , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Maloclusión/complicaciones , ARN Mensajero , Distribución Aleatoria , Ratas , Articulación Temporomandibular , Trastornos de la Articulación Temporomandibular/metabolismo , Tomografía Computarizada por Rayos X , Factores de Transcripción/análisis
20.
J Oral Rehabil ; 46(9): 820-827, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31046158

RESUMEN

Biomarkers of temporomandibular joint (TMJ) osteoarthritis (OA) remain unknown. The objective was to detect whether molecular biomarkers from peripheral blood leucocytes (PBLs) engage in TMJ OA lesions. Thirty-four six-week-old Sprague Dawley rats were used. The top upregulated gene ontology categories and gene-fold changes in PBLs were detected by a microarray analysis comparing rats that received 20-week unilateral anterior crossbite (UAC) treatment with age-matched controls (n = 4). Twenty weeks of UAC treatment had been reported to induce TMJ OA-like lesions. The other twenty-four rats were randomly placed in the UAC and control groups at 12- and 20-week time points (n = 6). The mRNA expression levels of the selected biomarkers derived from the microarray analysis and their protein expression in the alveolar bone and TMJ were detected. The microarray analysis indicated that the three most highly involved genes in PBLs were Egr1, Ephx1 and Il10, which were confirmed by real-time PCR detection. The increased protein expression levels of the three detected molecules were demonstrated in cartilage and subchondral bone (P < 0.05), and increased levels of EPHX1 were reported in discs (P < 0.05); however, increased levels were not present in the alveolar bone. Immunohistochemistry revealed the increased distribution of EGR1-positive, EXPH1-positive and IL10-positive cells predominantly in the osteochondral interface, with EXPH1 also present in TMJ discs. In conclusion, the increased mRNA expression of Egr1, Ephx1 and Il10 in PBLs may serve as potential biomarkers for developed osteoarthritic lesions relating to osteochondral interface hardness changes induced by dental biomechanical stimulation.


Asunto(s)
Cartílago Articular , Trastornos de la Articulación Temporomandibular , Animales , Cóndilo Mandibular , Ratas , Ratas Sprague-Dawley , Articulación Temporomandibular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...